

UNIVERSITY^{OF} BIRMINGHAM

Memories & highlights of my early scientific career, 1975-2008 : science at 2nd generation synchrotron sources (Daresbury, UK and Bessy 1, Germany)

Richard Tuckett, University of Birmingham UK r.p.tuckett@bham.ac.uk

http://www.synchrotron.org.uk/index.php?option=com_content&view=article&id=114:fl uorescence-experiments-on-small-molecules&catid=35:chemistry&Itemid=53

Hefei (1), October 2019

Thanks to all my research workers and collaborators

PhD, 1975-1979

Double-pass SISAM spectrometer for the near infra-red (1–2 μm)

HO₂· free radical $A^{2}A' \rightarrow X^{2}A'' \lambda_{o} = 1.43 \mu m$, resolution 0.2 cm⁻¹ DO₂· free radical $A^{2}A' \rightarrow X^{2}A''$

H (D) — O

Geometry (two bond lengths, one bond angle) determined in both electronic states

Mol. Phys., (1979) 37, 379 & 403

PhD (1979) : $O_2 a {}^1\Delta_g \rightarrow X {}^3\Sigma_g^-(0,0)$ band, $\lambda_o = 1.27 \ \mu m$ Classic example of P, Q and R-branches, $\Delta B \sim 0$: resolution = 0.2 cm⁻¹

Figure 4.3 : High resolution spectrum of $0_2 \Delta_g(v = 0) \rightarrow \overline{2}\Sigma_g(v = 0).$

Crossed Molecular beam / Electron beam apparatus (1978–1982) Alan Carrington (Southampton, UK)

Source of rotationally-cold molecular ions. Large molecules.

Mol. Phys., (1983) <u>49</u>, 475

Figure 2. The (8, 3) band of $F_2^+ \tilde{A} \, {}^2\Pi_u \to \tilde{X} \, {}^2\Pi_g$ at 4560 Å, rotationally resolved. The J numberings of the two P branches are shown.

Daresbury Synchrotron Radiation Source, Cheshire (1988-2008)

First simple fluorescence excitation apparatus, Daresbury, 1988–2000

Resonant and non-resonant excitation

Resonant photon excitation

Formation of a fluorescing fragment via a dissociative Rydberg state of AB_n. Resonant process.

$$AB_{n} + hv_{1} \rightarrow AB_{n}^{*}$$

$$AB_{n}^{*} \rightarrow AB_{n-1}^{*} + B$$

$$AB_{n-1}^{*} \rightarrow AB_{n-1} + hv_{2}$$
e.g. BF₂ / BF₃
BCl and BCl₂ / BCl₃

Non-resonant photon excitation

Sharp turn-on of fluorescence. Signal present for photon energies well in excess of threshold ; electron carries away excess energy. Non-resonant process ⇒ formation of excited, fluorescing electronic state of parent ion.

 $AB_n + hv_1 \rightarrow (AB_n^+)^* + e^ (AB_n^+)^* \rightarrow AB_n^+ + hv_2$ e.g. N_2^+ / N_2 ; CO_2^+ / CO_2 BCI_2^+ and BCI_3^+ / BCI_3

SiCl₄ / tunable vacuum-UV. Detect fluorescence 300–500 nm. Emitter is SiCl₄⁺ C^2T_2 , adiabatic IE = 15.1 eV.

J. Chem. Phys., (1988) 89, 2675

Dispersed fluorescence experiments (1) following vacuum-UV photoexcitation, Bessy 1, Berlin, Germany (Baumgärtel and Jochims), 1993–1999 *'Small is beautiful'*

PF₃ / vacuum-UV excitation. Emission due to PF₂· or PF free radicals. Chem Phys. Letts. (1996) <u>261</u>, 486 & J. Chem. Phys., (1998) <u>108</u>, 857

Low resolution dispersed spectra following PF₃ vacuum-UV photoexcitation, Bessy 1 (1998)

(a) <u>9.8 eV</u> $PF_2 \cdot A^2 A_1 (^2\Pi) - X^2 B_1$

(b) <u>11.0 eV</u> $PF_2 \cdot A^2 A_1 (^2\Pi) - X^2 B_1$ and $B^2 B_2 - X^2 B_1$

(c) <u>14.4 eV</u> $PF_2 \cdot C^2 A_1 - X^2 B_1$ and $E^2 B_1 (^2\Pi) - A^2 A_1 (^2\Pi)$

(d) <u>16.1 eV</u> PF $A^{3}\Pi - X^{3}\Sigma^{-}$

This still remains the most extensive study of the valence spectroscopy of the PF₂. free radical Upgrade of the 1 m Seya to a simpler 1 m Wadsworth monochromator on beamline 3.1 at Daresbury, 2001 – 2005 *Nucl. Instr. Meth. Phys. B.,* (2005) <u>237</u>, 656

No entrance slit, used the full horizontal aperture of the beamline. Resolution only depended upon horizontal electron beam size in the ring, c. 0.05 nm.

Dispersed fluorescence experiments (2) on the new upgraded beamline at Daresbury using <u>CCD multi-channel</u> fluorescence detection, 2004 – 2008.

Record wide range of emitting wavelengths *simultaneously*; the Jacquinot advantage.

Wavelength / nm

BCl₃ photoexcited at 17.7 eV. Emission due to BCl₂⁺ cation A - X, vibrational progression of 650 ± 30 cm⁻¹ in either excited or ground state

Single-bunch, lifetime experiments with BCl₃ conducted at Bessy 1 Both E_1 and λ_2 are defined (a) $E_1 = 15.5 \text{ eV}, \lambda_2 = 272 \text{ nm}$ BCI A ¹ Π , τ = 20.0 (2) ns (b) $E_1 = 16.0 \text{ eV}, \lambda_2 = 355 \text{ nm}$ BCl₃⁺ D^{2} E', τ = 8.9 (2) ns (c) $E_1 = 20.6 \text{ eV}, \lambda_2 = 209 \text{ nm}$ B* (2s¹ 2p²) ²D, τ = 21.5 (6) ns J. Phys. B., (1999) <u>32</u>, 2569

Absorption experiments, Bessy 1, for λ < 105 nm, but Beer-Lambert still applies: <u>absolute</u> values of vacuum-UV absorption cross sections are determined

Vacuum-UV absorption spectrum of SF_5CF_3 ; important to determine the lifetime of this greenhouse gas in the earth's atmosphere (τ = 800–1000 years) *Chem. Phys. Letts.*, (2003) <u>367</u>, 697

Multi-purpose coincidence apparatus, Daresbury UK, 1993–2008

One of the early 'positionsenstitive' detectors to study photofragmentation processes in polyatomic molecular ions (TPEPICO spectroscopy)

Later, was adapted to study:

Photolon Fluorescence Coincidence (PIFCO) spectroscopy

Threshold PhotoElectron Fluorescence Coincidence (TPEFCO) spectroscopy

Meas. Sci. Tech., (1992) <u>3</u>, 891

PIFCO spectra from SiCl₄⁺

Fluorescence from C²T₂ state of SiCl₄⁺ photoexcited at 15.1 eV

Unfiltered fluorescence : Coincidences observed between Photons and two lons whose time-of-flight correspond to SiCl₃⁺ and SiCl₄⁺

UV fluorescence: Emission to the X²T₁ ground state of the cation. This state is bound. Coincidences are detected between Photons and the parent ion only

Visible fluorescence : Emission to the A ${}^{2}T_{2}$ state of SiCl₄⁺. This state is repulsive and one Si–Cl bond breaks. Coincidences are now detected between Photons and the daughter ion, SiCl₃⁺

J. Chem. Phys., (1994) <u>101</u>, 10559

Vacuum-UV negative photoion spectroscopy: ABC + $hv \rightarrow A^- + BC^+$

(Daresbury UK, 2006-2011)

Direct ion-pair formation

Predissociation into ion pairs

Simpson and Tuckett, Intern. Rev. Phys. Chem., (2011) 30, 197–273

Apparatus to detect negative photoions (*or* anions) as a function of photon energy : collaboration with Latimer (Queens University, Belfast)

Anion production from SF_5CF_3

Large number of anions are observed. F^- is the strongest, followed by SF_4^- and SF_3^- . F_2^- , SF_2^- and SF^- anions are the weakest.

By calibration initially with CF_4 and SF_6 , <u>absolute</u> values of cross sections and quantum yields could be determined.

J. Chem. Phys., (2008) <u>128</u>, 124315

Molecule [AIE ^a (eV)]	Anion	AE ^b (eV)	Cross-section ^c (cm ²)	Energy ^d (eV)	Quantum yield ^e
SF ₆ [15.1]	$\begin{array}{c} \mathrm{F}^{-}\\ \mathrm{F}_{2}^{-}\\ \mathrm{SF}_{5}^{-}\\ \mathrm{SF}_{6}^{-} \end{array}$	12.7 16.3 15.1 15.1	$7.1 \times 10^{-21} \\ 1.4 \times 10^{-22} \\ \{f}^{f}$	14.2 18.3 17.5 17.1	2.4×10^{-4} 1.9×10^{-6} _g _g
CF ₄ [15.4]	F^- F^2	13.0 20.1	$\begin{array}{c} 1.4 \times 10^{-21} \\ 4.0 \times 10^{-23} \end{array}$	14.0 21.6	2.8×10^{-5} 5.6×10^{-7}
SF ₅ CF ₃ [12.9]	$\begin{array}{c} \mathrm{F}^{-}\\ \mathrm{F}_{2}^{-}\\ \mathrm{SF}^{-}\\ \mathrm{SF}_{2}^{-}\\ \mathrm{SF}_{2}^{-}\\ \mathrm{SF}_{3}^{-}\\ \mathrm{SF}_{4}^{-}\\ \mathrm{SF}_{5}^{-} \end{array}$	11.05 16.1 24.0 20.2 15.4 13.0 12.9	$\begin{array}{c} 3.4\times10^{-20}\\ 1.2\times10^{-21}\\ 2.8\times10^{-22}\\ 3.9\times10^{-22}\\ 1.0\times10^{-20}\\ 1.3\times10^{-20}\\ \{f} \end{array}$	16.9 17.9 28.8 24.2 17.6 14.1 17.0	$\begin{array}{c} 3.4 \times 10^{-4} \\ 1.1 \times 10^{-5} \\ 2.4 \times 10^{-6} \\ 2.5 \times 10^{-6} \\ 1.0 \times 10^{-4} \\ 1.7 \times 10^{-4} \\ _^{g} \end{array}$

Table 2. Appearance energies, cross-sections and quantum yields for anions observed from photoexcitation of SF_6 , CF_4 , and SF_5CF_3 .

